Q
What is a milling equipment?
A

Milling is performed with a milling cutter in various forms, held in a collett or similar which, in turn, is held in the spindle of a milling machine.

Types and nomenclature

Mill orientation is the primary classification for milling machines. The two basic configurations are vertical and horizontal. However, there are alternative classifications according to method of control, size, purpose and power source.

 

Vertical mill

In the vertical mill the spindle axis is vertically oriented. Milling cutters are held in the spindle and rotate on its axis. The spindle can generally be extended (or the table can be raised/lowered, giving the same effect), allowing plunge cuts and drilling. There are two subcategories of vertical mills: the bed mill and the turret mill.

1.A turret mill has a stationary spindle and the table is moved both perpendicular and parallel to the spindle axis to accomplish cutting. The most common example of this type is the Bridgeport, described below. Turret mills often have a quill which allows the milling cutter to be raised and lowered in a manner similar to a drill press. This type of machine provides two methods of cutting in the vertical (Z) direction: by raising or lowering the quill, and by moving the knee.

2.In the bed mill, however, the table moves only perpendicular to the spindle's axis, while the spindle itself moves parallel to its own axis.

Turret mills are generally considered by some to be more versatile of the two designs. However, turret mills are only practical as long as the machine remains relatively small. As machine size increases, moving the knee up and down requires considerable effort and it also becomes difficult to reach the quill feed handle (if equipped). Therefore, larger milling machines are usually of the bed type.

A third type also exists, a lighter machine, called a mill-drill, which is a close relative of the vertical mill and quite popular with hobbyists. A mill-drill is similar in basic configuration to a small drill press, but equipped with an X-Y table. They also typically use more powerful motors than a comparably sized drill press, with potentiometer-controlled speed and generally have more heavy-duty spindle bearings than a drill press to deal with the lateral loading on the spindle that is created by a milling operation. A mill drill also typically raises and lowers the entire head, including motor, often on a dovetailed vertical, where a drill press motor remains stationary, while the arbor raises and lowers within a driving collar. Other differences that separate a mill-drill from a drill press may be a fine tuning adjustment for the Z-axis, a more precise depth stop, the capability to lock the X, Y or Z axis, and often a system of tilting the head or the entire vertical column and powerhead assembly to allow angled cutting. Aside from size and precision, the principal difference between these hobby-type machines and larger true vertical mills is that the X-Y table is at a fixed elevation; the Z-axis is controlled in basically the same fashion as drill press, where a larger vertical or knee mill has a vertically fixed milling head, and changes the X-Y table elevation. As well, a mill-drill often uses a standard drill press-type Jacob's chuck, rather than an internally tapered arbor that accepts collets. These are frequently of lower quality than other types of machines, but still fill the hobby role well because they tend to be benchtop machines with small footprints and modest price tags.

 

Vertical milling machine. 1: milling cutter 2: spindle 3: top slide or overarm 4: column 5: table 6: Y-axis slide 7: knee 8: base


Horizontal milling machine

A horizontal mill has the same sort but the cutters are mounted on a horizontal spindle (see Arbor milling) across the table. Many horizontal mills also feature a built-in rotary table that allows milling at various angles; this feature is called a universal table. While endmills and the other types of tools available to a vertical mill may be used in a horizontal mill, their real advantage lies in arbor-mounted cutters, called side and face mills, which have a cross section rather like a circular saw, but are generally wider and smaller in diameter. Because the cutters have good support from the arbor and have a larger cross-sectional area than an end mill, quite heavy cuts can be taken enabling rapid material removal rates. These are used to mill grooves and slots. Plain mills are used to shape flat surfaces. Several cutters may be ganged together on the arbor to mill a complex shape of slots and planes. Special cutters can also cut grooves, bevels, radii, or indeed any section desired. These specialty cutters tend to be expensive. Simplex mills have one spindle, and duplex mills have two. It is also easier to cut gears on a horizontal mill. Some horizontal milling machines are equipped with a power-take-off provision on the table. This allows the table feed to be synchronized to a rotary fixture, enabling the milling of spiral features such as hypoid gears.

 

Horizontal milling machine. 1: base 2: column 3: knee 4 & 5: table (x-axis slide is integral) 6: overarm 7: arbor (attached to spindle)

 

Comparative merits

The choice between vertical and horizontal spindle orientation in milling machine design usually hinges on the shape and size of a workpiece and the number of sides of the workpiece that require machining. Work in which the spindle's axial movement is normal to one plane, with an endmill as the cutter, lends itself to a vertical mill, where the operator can stand before the machine and have easy access to the cutting action by looking down upon it. Thus vertical mills are most favored for diesinking work (machining a mould into a block of metal).[6] Heavier and longer workpieces lend themselves to placement on the table of a horizontal mill.

Prior to numerical control, horizontal milling machines evolved first, because they evolved by putting milling tables under lathe-like headstocks. Vertical mills appeared in subsequent decades, and accessories in the form of add-on heads to change horizontal mills to vertical mills (and later vice versa) have been commonly used. Even in the CNC era, a heavy workpiece needing machining on multiple sides lends itself to a horizontal machining center, while diesinking lends itself to a vertical one.

 

Alternative classifications

In addition to horizontal versus vertical, other distinctions are also important:

Criterion

Example classification scheme

Comments

Spindle axis orientation

Vertical versus horizontal;
Turret versus non-turret

Among vertical mills, "Bridgeport-style" is a whole class of mills inspired by the Bridgeport original, rather like the IBM PC spawned the industry of IBM-compatible PCs by other brands

Control

Manual;
Mechanically automated via cams;
Digitally automated via NC/CNC

In the CNC era, a very basic distinction is manual versus CNC.
Among manual machines, a worthwhile distinction is non-DRO-equipped versus DRO-equipped

Control (specifically among CNCmachines)

Number of axes (e.g., 3-axis, 4-axis, or more)

Within this scheme, also:

Pallet-changing versus non-pallet-changing

Full-auto tool-changing versus semi-auto or manual tool-changing

Purpose

General-purpose versus special-purpose or single-purpose

 

Purpose

Toolroom machine versus production machine

Overlaps with above

Purpose

"Plain" versus "universal"

A distinction whose meaning evolved over decades as technology progressed, and overlaps with other purpose classifications above. Not relevant to today's CNC mills. Regarding manual mills, the common theme is that "plain" mills were production machines with fewer axes than "universal" mills; for example, whereas a plain mill had no indexing head and a non-rotating table, a universal mill would have those. Thus it was suited to universal service, that is, a wider range of possible toolpaths. Machine tool builders no longer use the "plain"-versus-"universal" labeling.

Size

Micro, mini, benchtop, standing on floor, large, very large, gigantic

 

Power source

Line-shaft-drive versus individual electric motor drive

Most line-shaft-drive machines, ubiquitous circa 1880–1930, have been scrapped by now

Hand-crank-power versus electric

Hand-cranked not used in industry but suitable for hobbyist micromills

 

Variants

1.Bed mill This refers to any milling machine where the spindle is on a pendant that moves up and down to move the cutter into the work, while the table sits on a stout bed that rests on the floor. These are generally more rigid than a knee mill. Gantry mills can be included in this bed mill category.

2.Box mill or column mill Very basic hobbyist bench-mounted milling machines that feature a head riding up and down on a column or box way.

3.C-frame mill These are larger, industrial production mills. They feature a knee and fixed spindle head that is only mobile vertically. They are typically much more powerful than a turret mill, featuring a separate hydraulic motor for integral hydraulic power feeds in all directions, and a twenty to fifty horsepower motor. Backlash eliminators are almost always standard equipment. They use large NMTB 40 or 50 tooling. The tables on C-frame mills are usually 18" by 68" or larger, to allow multiple parts to be machined at the same time.

4.Floor mill These have a row of rotary tables, and a horizontal pendant spindle mounted on a set of tracks that runs parallel to the table row. These mills have predominantly been converted to CNC, but some can still be found (if one can even find a used machine available) under manual control. The spindle carriage moves to each individual table, performs the machining operations, and moves to the next table while the previous table is being set up for the next operation. Unlike other mills, floor mills have movable floor units. A crane drops massive rotary tables, X-Y tables, etc., into position for machining, allowing large and complex custom milling operations.

5.Gantry mill The milling head rides over two rails (often steel shafts) which lie at each side of the work surface.

6.Horizontal boring mill Large, accurate bed horizontal mills that incorporate many features from various machine tools. They are predominantly used to create large manufacturing jigs, or to modify large, high precision parts. They have a spindle stroke of several (usually between four and six) feet, and many are equipped with a tailstock to perform very long boring operations without losing accuracy as the bore increases in depth. A typical bed has X and Y travel, and is between three and four feet square with a rotary table or a larger rectangle without a table. The pendant usually provides between four and eight feet of vertical movement. Some mills have a large (30" or more) integral facing head. Right angle rotary tables and vertical milling attachments are available for further flexibility.

7.Jig borer Vertical mills that are built to bore holes, and very light slot or face milling. They are typically bed mills with a long spindle throw. The beds are more accurate, and the handwheels are graduated down to .0001" for precise hole placement.

8.Knee mill or knee-and-column mill refers to any milling machine whose x-y table rides up and down the column on a vertically adjustable knee. This includes Bridgeports.

9.Planer-style mill Large mills built in the same configuration as planers except with a milling spindle instead of a planing head. This term is growing dated as planers themselves are largely a thing of the past.

10.Ram-type mill This can refer to any mill that has a cutting head mounted on a sliding ram. The spindle can be oriented either vertically or horizontally. In practice most mills with rams also involve swiveling ability, whether or not it is called "turret" mounting. The Bridgeport configuration can be classified as a vertical-head ram-type mill. Van Norman specialized in ram-type mills through most of the 20th century. Since the wide dissemination of CNC machines, ram-type mills are still made in the Bridgeport configuration (with either manual or CNC control), but the less common variations (such as were built by Van Norman, Index, and others) have died out, their work being done now by either Bridgeport-form mills or machining centers.

11.Turret mill More commonly referred to as Bridgeport-type milling machines. The spindle can be aligned in many different positions for a very versatile, if somewhat less rigid machine.


Alternative terminology

A milling machine is often called a mill by machinists. The archaic term miller was commonly used in the 19th and early 20th centuries.Since the 1960s there has developed an overlap of usage between the terms milling machine and machining center. NC/CNC machining centers evolved from milling machines, which is why the terminology evolved gradually with considerable overlap that still persists. The distinction, when one is made, is that a machining center is a mill with features that pre-CNC mills never had, especially an automatic tool changer (ATC) that includes a tool magazine (carousel), and sometimes an automatic pallet changer (APC). In typical usage, all machining centers are mills, but not all mills are machining centers; only mills with ATCs are machining centers.

 

Computer numerical control

Most CNC milling machines (also called machining centers) are computer controlled vertical mills with the ability to move the spindle vertically along the Z-axis. This extra degree of freedom permits their use in diesinking, engraving applications, and 2.5D surfaces such as relief sculptures. When combined with the use of conical tools or a ball nose cutter, it also significantly improves milling precision without impacting speed, providing a cost-efficient alternative to most flat-surface hand-engraving work.

CNC machines can exist in virtually any of the forms of manual machinery, like horizontal mills. The most advanced CNC milling-machines, the multiaxis machine, add two more axes in addition to the three normal axes (XYZ). Horizontal milling machines also have a C or Q axis, allowing the horizontally mounted workpiece to be rotated, essentially allowing asymmetric and eccentric turning. The fifth axis (B axis) controls the tilt of the tool itself. When all of these axes are used in conjunction with each other, extremely complicated geometries, even organic geometries such as a human head can be made with relative ease with these machines. But the skill to program such geometries is beyond that of most operators. Therefore, 5-axis milling machines are practically always programmed with CAM.

The operating system of such machines is a closed loop system and functions on feedback. These machines have developed from the basic NC (NUMERIC CONTROL) machines. A computerized form of NC machines is known as CNC machines. A set of instructions (called a program) is used to guide the machine for desired operations. Some very commonly used codes, which are used in the program are:

G00 – rapid traverse

G01 – linear interpolation of tool.

G21 – dimensions in metric units.

M03/M04 – spindle start (clockwise/counter clockwise).

T01 M06 – automatic tool change to tool 1

M30 – program end.

Various other codes are also used. A CNC machine is operated by a single operator called a programmer. This machine is capable of performing various operations automatically and economically.

With the declining price of computers and open source CNC software, the entry price of CNC machines has plummeted.

Next:What is milling process?